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During the past 60 min, oil companies have extracted 6 trillion
liters of oil from the ground, thereby giving a striking illustration
of the impact of multiphase flows on the world economy. From
a fundamental perspective, we largely understand the dynamics
of interfaces separating immiscible fluids driven through hetero-
geneous environments. In stark contrast, the basic mechanisms
ruling the transport of fragmented fluids, such as foams and
emulsions, remain elusive with studies mostly limited to isolated
droplets and bubbles. Here, we demonstrate that the mobiliza-
tion of emulsion driven through model disordered media is a
critical plastic depinning transition. To elucidate this collective
dynamics, we track the trajectories of hundreds of thousands of
microfluidic droplets advected through random lattices of pin-
ning sites. Their dynamics reveals that macroscopic mobilization
only requires the coordinated motion of small groups of parti-
cles and does not involve any large-scale avalanches. Criticality
arises from the interplay between contact and hydrodynamic
interaction, which channel seemingly erratic depinning events
along smectic river networks correlated over system spanning
scales. Beyond the specifics of emulsion transport, we close our
article discussing the similarities and profound differences with
the plastic depinning transitions of driven flux lines in high-Tc

superconductors, charged colloids, and grain transport in eroded
sand beds.

transport | heterogeneous media | dynamical phase transition |
plastic depinning

From enhanced oil recovery to water remediation, a number of
industrial processes having a prominent impact on the world

economy and environment rely on multiphase flows in heteroge-
neous media. Since the early days of oil production, engineers
noticed that the displacements of confined immiscible fluids
result in inhomogeneous spatial patterns limiting oil extraction
from rocks and soils (1). Since then, these patterns have been
extensively studied by fluid mechanics, statistical physicists, and
engineers (2–5).

However, our understanding has remained strongly un-
balanced. The imbibition and drainage patterns formed by mov-
ing interfaces separating immiscible fluids have been extensively
investigated (2–9). Conversely, the collective dynamics of frag-
mented interfaces in foams and emulsions remains virtually
uncharted territory, although relevant to a number of practical
situations (10–13). Understanding the displacement of say oil-
in-water emulsions in a natural porous medium is a formidable
challenge that remains out of reach of current physical investiga-
tions. In principle, it requires addressing at once the transport,
the coalescence, the fragmentation, and the coarsening of the
droplets, modeling multiscale flows and their interplay with the
droplets’ shape and speed (14, 15). Until now, aside from rare
exceptions, most physics studies have therefore focused on the
microscopic mechanisms occurring at the pore scale, or on flows
past isolated obstacles (16–21).

From a broader perspective, the transport of interacting par-
ticles driven through disordered media is an essential aspect of
nonequilibrium physics in systems as diverse as driven flux lines

and skyrmion textures in condensed matter, colloidal transport,
and sand-bed erosion (5, 22–24). Unlike driven elastic systems (4,
5, 25, 26), such as contact lines, Abrikosov lattices, or magnetic
domain walls, the situation where collections of driven particles
undergo plastic flows through disordered media lacks quantita-
tive model experiments to build a unified framework (22–24, 27,
28). We intend to rectify this situation.

In this article, we introduce a model experiment to address the
plastic depinning of particles hydrodynamically driven through
heterogeneous environments. In the spirit of the seminal work
by Saffman and Taylor (29), we consider a minimal geometry
and flow monodisperse emulsions past random lattices of pin-
ning sites in two-dimensional (2D) microchannels. We find a
sharp dynamical transition between a creeping regime where
the droplets undergo finite displacements and a flowing regime
where a finite fraction of the emulsion is effectively mobilized
through sparse static rivers. We establish the critical nature
of this mobilization transition and demonstrate the smectic
symmetry of the resulting flow patterns. We show that criti-
cality does not arise from scale-free avalanches, or large-scale
dynamical heterogeneities, but stems instead from hydrody-
namic focusing through self-organized river networks correlated
over system spanning scales. We conclude our article discussing
the essential similarities and difference between hydrodynamic
mobilization, plastic depinning in dirty superconductors (22),
granular erosion (24, 30), and Darcy flows in yield stress fluids
(31, 32).

Significance

Processes as diverse as enhance oil recovery, sand-bed ero-
sion, and even transport of magnetic flux lines in dirty
superconductors ultimately rely on the displacement of inter-
acting particles (oil droplets, grains, or flux lines) through
disordered media. In all these examples, a minimal drive is
required to unpin and transport interacting particles. Taking
advantage of model microfluidic experiments, we demon-
strate that the depinning of emulsions advected through
disordered channels is a critical phenomenon: a phase transi-
tion between a regime where the droplets are trapped and
a flowing regime where the droplets are effectively trans-
ported through an emergent network of sparse rivers. These
experiments illuminate the universality of plastic depinning
dynamics.
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Experiments in Patterned Microfluidics
Our experimental setup is sketched in Fig. 1A (Materials and
Methods). We form a monodisperse emulsion of hexadecane at
a T junction in an aqueous solution of glycerol (40 wt %), sur-
factant (sodium dodecyl sulfate [SDS] 0.1 wt %), and fluorescent
dye. The SDS surfactant prevents coalescence and wetting of the
channel walls by the hexadecane droplets (Fig. 1B). The resulting
stable emulsion is injected in a 4.5-cm long and 2-cm wide Hele–
Shaw cell through a homogenizer module. In the main channel of
height 60µm, the drops are squeezed and have a pancake shape
of radius a = 47µm (Fig. 1 B and C). Each experiment is initial-
ized injecting three pore volumes of the emulsion at a solvent
flow rate Q = 15µL/min (Movie S1). When the injection stops,
we are left with a uniform distribution of droplets with an area
fraction of 0.70± 0.01 if not specified otherwise.

We introduce disorder by patterning the bottom wall of the
main channel with circular wells of radius 20µm and depth
20µm (Fig. 1 A and B). As extensively studied in ref. 33, when
a droplet contacts a well, it deforms, relaxes its surface energy,
and therefore gets pinned by the well (Fig. 1 B and C). In our
experiments, the pinning-well centers are uncorrelated in space;
they are distributed according to Poisson distributions (Fig. 1A).
We use three random lattices, which we characterize by the aver-
age number of pinning-site centers per droplet: ρp = 1.0 (two
independent realizations) and ρp = 0.54. As the wells can over-
lap (Fig. 1B), we quantify the disorder strength by measuring
the critical depinning flow speed associated with each pinning
site. To do so we inject a dilute fraction of droplets in the dis-
ordered channel and continuously increase the flow rate. The
distribution plotted in Fig. 1D defines a typical depinning flow
rate QD = 120µL/min for isolated droplets. QD corresponds to
a capillary number Ca ∼ 2× 10−3.

Results
Droplet Mobilization as a Dynamical Phase Transition. We now
describe the mobilization of concentrated emulsions. The exper-
iment consists of driving at constant flow rate a collection of
droplets trapped by the lattice of pinning site (Movies S2 and S3).
We stress that no additional droplet is produced in the course of
the mobilization experiment. Tracking the individual trajectories
of hundreds of thousands oil droplets, we distinguish two qual-
itatively different regimes illustrated in Fig. 2A and Movies S3
and S4.

Creeping regime. At low flow rates, the droplets undergo finite
displacements but ultimately remain trapped in the disordered
channel. In Fig. 2A showing the state of the system after the injec-
tion of three pore volumes, we merely observe the formation of
locally depleted regions. Comparing the final and initial density
fields, we find that only a small fraction of droplets is displaced,
and only over a finite distance, thereby forming droplet-depleted
regions (Fig. 2B). Increasing the flow rate increases the area
of the depleted regions and the number of finite displacements
events.
Mobilization regime. Macroscopic patterns emerge above a crit-
ical flow rate Q? that increases with the pinning-site density
(Fig. 2A). Virtually all droplets contribute to the formation of
a sparse network of branched and reconnected rivers percolat-
ing throughout the entire system (Fig. 2 A and B). Remarkably,
when the number densities of droplets and pinning sites are
equal, Q? = 3.5 µL/min is 30 times smaller than the individ-
ual depinning threshold QD = 120 µL/min, thereby revealing the
cooperative nature of the mobilization transition that we discuss
below.

The mobilization patterns reflect the net transport of the parti-
cles. In Fig. 2C, we plot the variations of the number of droplets
N (t) as a function of time. In the creeping regime, almost no
droplets are extracted. Conversely, in the mobilization regime a
finite fraction of the droplets escapes the channel. The transi-
tion between the two dynamics is sharp. Inspecting the variation
of the fraction of mobilized droplets, ΦM, as a function of the
applied flow (Fig. 2D), we find that ΦM bifurcates from zero to a
finite value when Q reaches Q?. In order to distinguish between
a sharp cross-over and a genuine dynamical transition, we first
plot the time τ needed to reach a stationary state in Fig. 2E.
Importantly, we compare the different timescales normalizing τ
by a flow rate-dependent timescale t0(Q). It is defined as the
advection time over a distance equals to one droplet radius a ,
for a free droplet. In the creeping regime, τ/t0 is vanishingly
small as the droplets hardly move over a single diameter. Con-
versely, deep in the mobilization regime τ converges toward the
free advection time over the entire observation window. How-
ever, the variations of τ are nonmonotonic and sharply increase
in the vicinity of Q? where τ/t0 is three orders of magnitudes
larger than in the creeping regime.

This behavior is suggestive of critical slowing down. To confirm
the hypothesis of a critical scenario, we measure the variations

A B C

D

Fig. 1. Microfluidic experiment. (A) Sketch of an empty microfluidic device composed of three modules. (A, I) A T junction is used to produce monodisperse
droplets of hexadecane in a water–glycerol solution. (A, II) A homogenizer module splits the droplet stream into 32 parallel channels. (A, III) The main
microfluidic channel is fed with the monodisperse emulsion. It includes a random lattice of overlapping circular wells of diameter 40µm. In this picture, the
relative density of pinning sites is ρp = 1.0. We perform our measurement in the window delimited by the dashed line. (B) Close-up on an 800 × 800-µm
window showing pinned and free droplets. The small circles are the pinning wells; the large circles are the oil droplets. Note that some of the wells overlap
and that no droplet coalesce. (Scale bar: 100 µm.) (C) Sketch of a squeezed droplet pinned by cylindrical well. Side view. (D) Probability distribution function
of the depinning flow rates measured on a dilute ensemble of monodisperse droplets. The distribution is peaked on the typical value QD = 120 µL/min.
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Fig. 2. The mobilization of emulsion through a disordered microfluidic channel is a critical dynamical transition. (A) Bright-field images of the droplets
(dark dots) in the disordered channel after the injection of three pore volumes at increasing flow rates Q. ρp = 1.0. (B) The color map indicates the difference
between the local droplet density at the end and at the beginning of the experiments. Red (blue) regions indicate a local increase (decrease) of the density.
Same experiments as in A. (C) Variations of the overall droplet fractionN as a function of time in the same device. Time is normalized by t0, the typical time
it takes for a free droplet to move over its own radius. (D) Fraction of droplets mobilized out of the system plotted as a function of the normalized flow rate
for three different disorder densities (orange symbols: ρp = 1.0; blue symbols: ρp = 1.0 [independent disorder realization]; green symbols: ρp = 0.54). All
plots collapse on a single master curve. Q? = 3.5, 1.0± 0.1 µL/min when ρp = 1.0, 0.54, respectively. (E) Same color code as in D. The normalized relaxation
time ofN (t) defined as τ/t0 = (1/t0)

∫∞
0 [N (t)−N (∞)]dt peaks at Q = Q?. (F) Same color code as in D and E. Filled symbols: length of the longest depleted

void measured when Q<Q? (B). Open symbols: length of the longest loop formed in the river network (A and SI Appendix). Both length scales grow
nonlinearly with Q and peak at the onset of mobilization.

of two typical length scales associated with the mobilization pat-
terns: the length `void of the largest depleted void in the creeping
regime and the size of the largest loop `loop of the river patterns
in the mobilization regime (Fig. 2 A and B). We show in Fig. 2F
that both length scales diverge at the onset of mobilization for
all pinning-site densities. Altogether, the sharp bifurcation of
ΦM, the divergence of the relaxation time, and the divergence of
the length scales characteristic of the rivers’ geometry establish
the critical nature of the mobilization transition. This conclusion
is further supported by the collapse of all plots in Fig. 2 D–F
on three master curves independent of the density of disorder:
criticality is a robust feature of emulsion mobilization.

Critical Flow Rate. To gain more insight on the mobilization
transition, we now investigate the migration dynamics of the
droplets. Fig. 3A shows an instantaneous map of the longi-
tudinal component of the droplet-velocity field ν‖(r, t), when
the droplet extraction rate is maximal (SI Appendix). In both
regimes, droplet motion takes the form of localized bursts of
activity involving clusters of droplets at contact (Movies S2–S5).
These localized events seem homogeneously distributed in space,
reflecting the nucleation and intermittent growth of depleted
regions across the whole sample. Unlike elastic depinning of
elastic solids and interfaces, the plastic flows at the onset of
mobilization are not supported by large-scale avalanches (5).
The absence of avalanches is confirmed by measurements of the
number of droplets in each moving cluster. The typical num-

ber of droplets in a cluster is comprised between two and eight,
hardly depends on ρp and does not diverge at Q? (Fig. 3C and
SI Appendix). Criticality does not stem from scale-free dynamical
heterogeneities.

The finite size of the local flow bursts informs us on the coordi-
nated action of lubricated contacts and geometrical flow focusing
at the onset of mobilization. The small value Q? =QD/30, mea-
sured when ρp = 1.0, can indeed be explained as follows. The
depinning of an isolated particle is driven by the pressure drop
over its own diameter (33). As ρp = 1.0, one would naively expect
QD to set the onset of mobilization. However, at Q?, the pressure
drop across a cluster having a typical size of 10a along the lon-
gitudinal direction is approximately five times larger than across
an isolated particle (Fig. 3 A and C). One would therefore expect
Q? to be five times smaller that QD, which is about an order of
magnitude larger than the measured value. This discrepancy is
solved noting that droplets at rest form a porous structure that
locally focuses the flow of the incompressible continuous phase.
A rough estimate of the amplification of the local flow is given by
the average porosity of the medium (1−φ), where φ is the area
fraction of the confined emulsion at t = 0. Altogether, hydro-
dynamic focusing and contact interactions give an estimate of
Q? of the order of ∼ 7µL/min in qualitative agreement with
our measurements (Q? = 3.5µL/min). We expect this overesti-
mate to originate from the exponential distribution cluster sizes
(Fig. 3C) and flow heterogeneities reported in similar porous
structures (15).
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Fig. 3. The droplets are mobilized through a smectic network of channels. (A) Instantaneous droplet-velocity field. The color indicates the magnitude of
the longitudinal component ν‖(r, t) evaluated at the time where the slope of the N (t) curve is maximum (Fig. 2C). (B) Map of the maximal droplet flux
V‖(r): a filamentous river network forms above Q? (SI Appendix). (C) Probability distribution function of the number of droplets forming a moving cluster
at Q = Q?. (Inset) Mean cluster size. Same color code as in Fig. 2. The number of droplets in a mobilized cluster is exponentially distributed with an average
value of the order of five particles. (D) Radial distribution function of the droplets at the beginning of the experiment when Q = 0 for the three disorder
realizations. The dashed line indicates the best exponential fit of the envelope for ρp = 1.0. g(r) peaks at r = 2a and decorrelates over distance smaller than
two diameters for all disorder densities. The difference in the structure of the emulsions for the two experiments performed at ρp = 1.0 originates from a
small difference (15%) in the droplet packing fraction.

Similarly, we can explain why the density of pinning sites does
not affect the size of the moving clusters at the onset of mobiliza-
tion. The emulsions we study have a packing fraction of 0.7. The
corresponding pair correlation functions g(r) shown in Fig. 3D
hardly vary as ρp increases. The maximum of g(r) is located at
r = 2a . The pair correlation function shows very little transla-
tionnal order (it decays exponentially over 1.5 drop diameters).
These features reflect a structure where the droplets form close-
packed clusters of approximately six particles with very little
structural correlation. This structure controls the size of the mov-
ing clusters. Wherever a local fluctuation in the flow field exists,
the resulting excess force on a droplet is mechanically transmit-
ted to all particles in (lubricated) contact. Given the structure
of the emulsion, the number of particles in close contact is set by
the correlation length of the close-packed cluster. At the onset of
mobilization, regardless of the value of ρp, we therefore expect
the number of particles in a moving cluster to be of the order
of approximately six particles. This estimate agrees with all our
measurements performed in the three random lattices (Fig. 3C).
We expect this scenario to be modified only at the onset of con-
tact percolation, in much denser emulsions, where a markedly
different depinning dynamics was reported numerically in ref. 34.

A Scale-Free Smectic Network. We now characterize and elucidate
the geometry of the river pattern. To do so, we first define the
maximal droplet flux V‖(r) = max

[
ν‖(r, t)

]
t , which continuously

bifurcates from zero to a finite value at Q?, when averaged over
space (Fig. 4A). Remarkably, the spatial fluctuations of V‖(r)
reveal that the seemingly erratic activity bursts seen in Fig. 3A
are actually strongly correlated in space. A direct comparison
between Figs. 2A and 3B indicates that nearly all depinning
events occur along the sparse river networks seen in the final
images of our experiments. From a Lagrangian perspective, this
dynamics translates into a bimodal distribution of the individ-

ual droplet speed νi normalized by the average flow speed vF in
Fig. 4B. The localization of the droplet dynamics explains why
only 40% of them can be effectively extracted out of the device,
even at the highest flow rates.

In order to quantitatively characterize the geometry of the
river network, we compute the two point correlations of the
V‖ field, CV(x , y). The spatial variations of CV(x , y) exhibit
three essential features. 1) The velocity correlations decay expo-
nentially with marked oscillations along the transverse direction
(Fig. 4C). These oscillations reflect the periodicity of the river
pattern along the y axis with a period λ= 2a irrespective of
the magnitude of the flow rate and of the pinning-site density
ρp. Remarkably, the emergence of transverse translational order
coincides with the onset of mobilization. We demonstrate this
structural transition by plotting the magnitude of the oscilla-
tions, S =CV(0, 2a)−CV(0, a), as a function of the flow rate in
Fig. 4D and show that S continuously bifurcates from 0 to a finite
value at Q?. 2) The correlations of V‖ decay algebraically along
the flow direction: CV(x , 0)∼ x−α with 0.5<α< 1 (Fig. 4E).
The smectic river patterns are therefore critical over the entire
mobilization regime. 3) The 2D variations of CV(x , y) hint
toward a microscopic explanation for the rivers’ geometry. The
oscillatory decay of CV(x , y) indeed persists only when the dis-
tance vector r makes an angle larger than π/4 with respect to the
longitudinal axis (Fig. 4F). This angle corresponds to the direc-
tion where a dipolar flow perturbation changes its sign along the
longitudinal axis, thereby suggesting the following picture.

Dipolar Interactions and Flow Focusing. We explain first how con-
tact interactions shape the mobilization patterns into smectic
river. We then account for their persistence in time by the chan-
neling of the solvent flow. Let us consider the initial configu-
ration sketched in Fig. 4G where the orange droplet under-
goes a finite displacement (advection or depinning). If they were

Le Blay et al. PNAS | June 23, 2020 | vol. 117 | no. 25 | 13917
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Fig. 4. Smectic rivers, dipolar interactions, and flow focusing. For the sake of clarity, we only present here the data for ρp = 1.0. The plots corresponding to
ρp = 1.0 (independent realization) and 0.54 are presented in SI Appendix, Figs. S2 and S3. (A) Spatial average of the maximal droplet flux 〈V‖(r)〉r plotted
vs. Q. The droplet flux 〈V‖(r)〉r bifurcates at Q?. (B) Histogram of the individual droplet speed (along the longitudinal direction). The bimodal distribution
reveals the formation of sparse flowing rivers as in ref. 35. (C) Decorrelations of the longitudinal flux 〈V‖(r)〉r along the direction y transverse to the flow.
(D) The smectic order parameter S = CV (0, 2a)− CV (0, a) bifurcates at Q = Q?. Nematic rivers of width 2a emerge at the onset of mobilization. (E) Along the
longitudinal x direction, the correlations of the droplet flux decay algebraically. CV (x, 0)∼ x−α with 0.5<α< 1. (F) 2D variations of the flux correlations:
CV (x, y). The dashed lines indicate the directions making angles of π/4 and 3π/4 with the x axis. The suppression of the oscillations past the dashed lines
hints toward the formation of dipolar force chains. (G) Sketch of the dipolar displacements induced by the depinning of one droplet in a contact cluster.
(H) The focusing of the driving flow along the low-density regions promotes and stabilizes mobilization along filamentous rivers. (I) Distribution of the
instantaneous and droplet flux ν‖(r, t) measured at the time where the decay rate of N (t) is maximal. The local droplet current is distributed according to
an exponential distribution. This measurement contrasts with the power law reported in erosion experiments and simulations (24, 30).

all free to move, the surrounding particles would experience a
dipolar perturbation to their motion. This behavior (36) merely
follows from mass conservation and therefore, applies to the qua-
sistatic displacements, or force distributions, in any ensemble of
nearly incompressible particles (see, e.g., ref. 37 for a neat exam-
ple in a granular medium). Mass conservation implies that the
divergence of the particle current vanishes, and at lowest order
in gradients, a local particle displacement along the direction
p̂ at the origin corresponds to a localized dipolar perturbation:
∇· j(r)∼ p̂ ·∇δ(r). The resulting displacements share the same
symmetry and are screened over a distance comparable with a
particle size (algebraically or exponentially) (38–40). The conse-
quences of this dipolar perturbation are illustrated in Fig. 4H.
Particles in the downstream region are further pushed, thereby
promoting the formation of a directed river. Conversely, the
depinning of the particles located above and below the moving
one is hindered by the dipolar contact-force network pushing
in the direction opposite to the driving flow. Farther away, in
the transverse direction, the dipolar perturbation vanishes, and
the driving fluid can freely contribute to particle depinning. All
together, these contact mechanisms promote, on average, the
formation of river lanes along the flow direction. We stress that
this mechanism is not specific to depinning physics (13, 22, 41,
42). Similar lanning patterns have been consistently reported
experimentally and numerically when ensembles of particles
are driven along opposite directions. From charged colloids to
self-propelled particles, they all form lively lanning patterns asso-
ciated with dipolar perturbations inducing transverse structural
oscillation and algebraic longitudinal correlations (see, e.g., refs.
40 and 43–45).

Unlike in conventional plastic depinning (22, 42), in our exper-
iments the smectic rivers persist in time. This distinction stems
from the specific interplay between the hydrodynamic drive and
the spatial structure of the particles. The formation of a river

locally increases the permeability of the medium and there-
fore, facilitates the fluid flow along this anisotropic region of
space. This hydrodynamic focusing stabilizes the rivers and hence
prevents them from shrinking or widening. In conclusion, the
coordinated action of lubricated contact interactions and hydro-
dynamic focusing explains the self-organization of the droplet
flow into a directed river patterns.

Discussion
The mobilization of emulsions in our disordered microfluidic
channels realizes a prototypical example of a plastic depinning
transition. Plastic depinning was introduced first in the context
of flux-line transport in high-Tc superconductors (22, 35, 46–48)
and further extended to driven soft matter (22–24, 27–30). Sim-
ply put, it defines a flow transition in ensembles of interacting
units driven by a constant force through a disordered landscape
of pinning sites. Regardless of the microscopic nature of the
driven units, plastic depinning is a dynamical phase transition
separating an absorbing static state and a flowing state where a
finite fraction of the particles is driven through filamentous pat-
terns (22). Although experiments remain scarce, and no unified
theory exists, a number of quantitative simulations provide a con-
sistent phenomenology (22, 42): 1) in 2D, the transition is critical
(22, 30, 46); 2) plastic flows are associated with a bimodal speed
distribution (23, 35); and 3) the instantaneous flows occur along
sparse networks of interconnected rivers having a smectic struc-
ture deep in the flowing regime (22, 42, 49). Our experiments
enjoy these three distinctive properties.

However, two noticeable differences exist between conven-
tional plastic depinning and emulsion mobilization. First, numer-
ical simulations and mean-field models predict an algebraic flux
distribution of the plastic flows qualitatively confirmed by gran-
ular erosion experiments (24, 30). In contrast, the distribution
of the emulsion flux is clearly exponential in Fig. 4I. Second,
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in “dry” plastic depinning, the river networks continuously rear-
range their structure in time, ultimately involving the motion of
all particles (24, 35, 42). The patterns shown in Figs. 2A and 3B
and Movie S3 have a markedly different dynamics. After formed,
the river network is frozen in time and merely allows a sub-
set of droplets to explore a finite fraction of space: both the
creeping and the mobilization regimes are absorbing states for
a macroscopic fraction of the driven particles.

We argue that these essential differences stem from the inter-
play between the hydrodynamic drive and the pattern geometry.
Unlike conventional plastic flows, emulsion mobilization is not
the response to a constant drive. As a void forms, it locally
increases the permeability of the medium, focuses the flow of the
driving fluid, and locally amplifies the local force on the arrested
droplets, which are more easily mobilized. The formation of the
river network is therefore a self-organization process reminiscent
of the Laplacian growth of viscous fingers (6). Similarly, the self-
focusing of the driving flow results in static viscous fingers with a
characteristic dendritic geometry that cannot undergo any struc-
tural transformation. This picture is further confirmed by wet
granular experiments and simulations that resemble our setup
in the limit of zero pinning strength (50–52), where the hydrody-
namic drive results in channeling geometries akin to Laplacian
patterns.

In conclusion, we have established that the critical mobiliza-
tion of emulsions defines a “universality class” that relies on
two essential ingredients. 1) The drive and the interactions must
conspire to allow particles to overcome a local mobilization
threshold, and 2) the magnitude of the driving force must be
amplified by local mobilization events. Beyond the specifics of
our experiments, this conclusion is supported by recent numer-
ical simulations and experiments on the displacement of yield
stress fluids in a model porous media (31, 32), a system that com-
bines the two necessary ingredients for critical mobilization and
that displays a strikingly similar self-organized plastic depinning
phenomenology (31).

Conclusion
The collective mobilization of droplets trapped by random lat-
tices of pinning sites results in large-scale patterns, chiefly gov-
erned by the interplay between hydrodynamic flows, contact
interactions, and capillary pinning force. We therefore expect
these generic mechanisms to shape the emergent flow patterns of
a broad class of fragmented liquid interfaces driven through con-
fined heterogeneous environments. Beyond the specifics of emul-
sions, we have established that the hydrodynamic mobilization of
soft particles in disordered geometries realizes a rare experimen-
tal demonstration of a critical plastic depinning transition. We
now need to address the robustness of this collective dynamics
to strongly nonlinear interactions between particles and disorder
such as coalescence and fragmentation, a formidable yet nec-
essary challenge to elucidate the general transport rules of soft
matter in heterogeneous media.

Materials and Methods
Microfabrication. The microfluidic devices are made using the microfluidic
sticker method (53). In brief, the fabrication of the stickers is based on the
soft imprint of a photocurable resin (NOA 81 Norland). We first make a mold
made of two layers of SU8 photoresist (Microchem). The first layer includes
the replica of the random lattice of circular wells; the second is a replica of
the straight channels. The mold is replicated to make a PDMS stamp. The
stamp is used to imprint a thin layer of thiolene-based resin (NOA 81) cast
on a glass coverslip. We cure the resin with 7 s of ultraviolet (UV) expo-
sure (20 mW/cm2; UV lamp Hamamatsu LC8). The microfluidic chip is finally
assembled, sealing the sticker with a quartz slide. Adhesion is ensured by
an additional UV exposure and thermal curing for 12 h at 90 ◦C. In order
to prevent the wetting of the channel walls by the emulsion droplets, we
treat the device as described in ref. 54. A deep UV exposure for 30 min in a
Jelight UVO CLeaner 42 makes the NOA 81 surface permanently hydrophilic.
The stickers are connected to three injection tubes using homemade
connectors.

Microfluidics and Imaging. We use the stickers to make and transport a
hexadecane emulsion dispersed in a solution of water, glycerol (40 wt%),
surfactant (SDS; 0.1 wt%), and fluorescein (0.2 wt%). To ensure repro-
ducible initial conditions, we use a systematic fluid-injection protocol. First,
the sticker is filled with CO2 that is more soluble in water than air. We
then fill the whole device with water–glycerol solution and dissolve all
CO2 bubbles. Finally, using precision syringe pumps (Nemesis; Cetoni), the
water–glycerol solution and hexadecane flow rates are fixed to Qw =

12 µL/min and Qh = 3 µL/min, respectively, at the T junction. In turn, we
produce a monodisperse hexadecane in water–glycerol emulsion with a
droplet radius of a = 47 µm and a surface fraction in the main channel
of 0.7. After the main channel is filled with the emulsion, we stop the
hexadecane flow, impose the minimum flow rate possible for the water–
glycerol mixture, and let the system to relax for 10 min. The experiment
and recording start after imposing the desired flow rate to the aqueous
phase.

We record the fluorescence images of the main channel with a Nikon
AZ100 using a 6× magnification and a 4-MPix CCD camera (Basler Aviator).
In order to correctly track the droplet trajectories, the frame rate is set as
follows: 3.3 fps for flow rates lower than Q = 6 µL/min and 10 fps for flow
rates higher than Q = 6 µL/min.

Detection and Data Analysis. We detect the center of mass of all droplets
in the field of view using the ImageJ minima intensity detection function
on contrast-enhanced and Gaussian blurred frames (the SD of the Gaussian
kernel is taken equal to a/2) (55). The droplets are detected with a pixel
accuracy. We reconstruct the drop trajectories and measure their instan-
taneous velocity using the MATLAB function by Blair and Dufresne based
on the Crocker and Grier tracking algorithm (56). We compute all of the
Eulerian and Lagrangian quantities defined in the text (density, velocity, cur-
rent fields, droplet speed, etc.) from the droplet instantaneous positions and
velocities as detailed in SI Appendix.

Data Availability. Data are available at Figshare, https://figshare.com/
articles/Figure data/12240206.
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dimensional porous medium. Water Resour. Res. 52, 773–790 (2016).
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